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1. INTRODUCTION

Usually, as a result of a high-throughput experiment, we want interpret the biological meaning of large amounts
of data, e.g. in the previous chapters we had methylation information for all the probes in a microarray from an
MeDIP experiment. In order to understand the meaning of these large genomic data sets, there are several efforts
that map genes into “biologically meaningful information”. The most well known are: Gene ontology (GO)[16]
that provides a controlled vocabulary to describe gene and gene product attributes in many organisms, Kyoto
Encyclopedia of Genes and Genomes (KEGG) [10] a collection enzymatic pathways and Molecular Signatures
Database (MSigDB), a collection of gene sets for use with GSEA software [15].

In the Gene Ontology project, genes are mapped to one or more nodes in a graph, called GO-terms. These
GO-terms are part of a directed acyclic graph (DAG), a tree-like hierarchical structure (see Figure 1). In a DAG,
parent nodes contain all child nodes but, unlike in a tree, a node in a DAG can have more than one parent.
Furthermore, one gene can have many GO-terms associated. There are three DAGs, called ontologies, where GO-
terms are annotated using a controled vocabulary that defines the function of the genes it contains. The onlogies
are molecular function, biological processes and cellular components. In our methods, we do not make explicit usage
of this DAG structure, so the methodologies can be applied to other information sources (not just GO).

The problem is to identify biologically meaningful gene sets from our experimental data. In the following section
we explain how this can be done and discuss the problems of current methodologies.

Figure 1: GO structure: A directed acyclic graph (DAG) for each
ontology. Figure from [16]



2. PREVIOUS WORK

Biologically meaningful gene sets (for example from GO or KEGG) are usually identified using the following steps
[14, 4, 6, 8, 13, 9, 11, 5, 12]: i) genes are ordered using experimental data, ii) a threshold is defined and genes
above that threshold are marked as “interesting”, iii) a significance of the overlap between each gene set and the
set of interesting genes is calculated, iv) multiple testing correction is applied [2] and v) gene sets are ranked by
the corrected significance. The algorithm is shown in table 1.

Table 1: Algorithm for ranking gene sets using p-values
Problem: Extract biologically meaningfull information from results of a

high-throughput experiment.
Input: G = {g1, g2, ..., gN} : A gene set

V = {v1, v2, ..., vN} : Experimental results for each gene.
th : A threshold
Θ = {T1, T2, ..., TH} : A collection of gene sets (e.g. GO-terms)

Output: Gene sets ranked by p-value
Assumptions: Very low p-values indicate a gene set is “meaningful”, so biological interpretation

of low p-value gene sets should “explain the data”
Algorithm:

Calculate a set of “interesting genes” I ⊂ G
gi ∈ I ⇔ vi >= th

For each T ∈ Θ
Calculate p-value

N = |G| : Number of genes in the experiment
n = |I| : Number of “interesting” genes
NT = |T | : Number of genes in T
nT = |I ∩ T | : Number of “interesting” genes in T

p-value = F (nT ; N, n, NT ) =
Pn

k=nT
f(k; N, n, NT ) =

Pn
k=nT

“
n
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Perform multiple testing correction
Rank gene sets in Θ by p-value

In our experimental data we have a set of N genes, n of them are “interesting genes”. We want to analyze
a GO-term T containing NT genes and nT of them are “interesting” (see Figure 2). Intuitively we can explain
how to calculate p-values by using the following analogy: assume we have an urn with 100 marbles (N genes),
30 of them are red (n interesting genes) and 70 are white. We draw 10 marbles (GO-term T containing NT

genes), the probability of having drawn 6 red marbles (nT ) is calculated using a hypergeometric distribution [7]

f(nT ;N,n,NT ) =
( n

nT
)( N−n

NT −nT
)

( N
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) . The probability of having drawn 6 or more marbles is calculated using Fisher’s

exact tests, that is a sum of hypergeometric probabilities [7]:
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As Fisher’s exact tests is hard to compute, a Chi-square approximation or a z-score is often used [6], [13].

There are some difficulties with this approach (the algorithm in Table 1): i) the number of significant gene sets
might be too large to manually interpret, and ii) gene set significance depends on an arbitrary threshold.

Motivation: We mentioned that what most current algorithms do is to calculate p-values for every gene set
and produce p-value ordered collection of all gene sets. We would like to extract the most meaningful gene sets.
We attack problem i by comparing collections of gene sets. Given two collections of gene sets Θ1 = {T1, T2, T3}
and Θ2 = {T4, T5, T6, T7} we need a way to decide if Θ1 is more informative than Θ2. We propose a solution using
mutual information [1].

3. RANKED LIST

Usually we have set of genes G = {g1, ..., gN}, a set V = {v1, ..., vN} of experimental results for each gene and
a subset of “interesting” genes I ⊂ G. To select these interesting genes, a threshold th is defined and all genes



Figure 2: In an experiment analyzing N genes,
n are “interesting” (red). Gene set T (show
in green) has NT genes, nT i are interesting.

gi having values vi ≥ th are considered “interesting”. There is no exact way to define the threshold, this was
mentioned in section 2 as problem ii and the methods we mentioned so far also have this problem.

In order to avoid this problem, we will use rank statistics. There are algorithms that use some type of rank
statistics, the most well know is GSEA [15], [3], that performs brownian bridge statistics. In this section we will
use rank sum statistics, will assume genes are ranked by their experimental values, i.e. we sort genes by V and we
assign a rank ri ∈ {1, ..., N}. So all genes are ordered and assigned a rank in the list:

Rank Gene
1 gi1

2 gi2

3 gi3
...

...
N giN

Then we define the rank sum as R =
∑k

i=1 ri. There is a relatioship between the ranked list and the set of
“interesting” genes I. Genes are “interesting” if they are high in the ranking (i.e. above a threshold). This means
that the mean ranking of genes in I is less than rmean (a rank mean value threshold) or the rank sum of genes in I
is less than rsum (a rank sum value threshold). For instance if there are N = 1000 genes in the ranked list and we
say that the first 100 are the “interesting” genes, this is equivalent to saying that the average rank rmean ≤ 50.5,
or that the rank sum is rsum ≤ 101 ∗ 50 = 5050. So for a set of genes T , the probability of a gene being interesting
P (G ∈ I|G ∈ T ) is analogous to the rank sum cumulative probability for the genes in T , P (R ≤ rsum|T ).

Probaility density function for a random variable that represents a rank sum is derived in appendix B. As
calculating this probabilies is computationally intensive, we also derive formulas to approximate these functions.

3.1. Simulations and results

We performed simulations comparing two simple algorithms, one using p-values (select gene set with lower p-value)
and other that creates sets using greedy strategy (at each iteration we keep the set that, when incorporated to
the current set, has the lowest p-value). Table 2 shows the criteria used for gene selection, and table 3 show mean
recovery rate for both algorithms. Table 4 shows a comparisson with GSEA, in our simulations, our algorithm
performed better.

If we have a set of genes ranked from 1 to N , we randomly select NT genes and add the ranks, we obtain
a “rank sum” (equation 1). In this chapter we will explain the mathematical details calculating the probability
dentity function of rank sum.

rsum =
∑
gi∈T

ri (1)



Table 2: Methodology for selecting gene sets and genes for our simulation
Select gene sets:

Initialize:
Number of gene sets to select: s
Symbol (gene) selection probability: p
Noise to signal ratio: ns
A set of genes (empty): G = ∅
Experimental values (empty): V = ∅

Select gene sets:
Randomly select s gene sets: Θori = {T1, T2, ..., Ts}

Select genes:
For each gene set T ∈ Θori

Randomly select genes g ∈ T with a probability p
Add each selected gene g to set G = G ∪ {g}
Assign an exprimental value v ∼ β(β1, β2) using beta distribution
Add corresponding values v to set V = V ∪ {v}

Add ’noise’:
Calculate the number of “noise” genes to add (number of genes in I times noise to signal ratio)

ng = ns |G|
Randomly select ng genes that do not belong to G, add those genes to G.

Apply algorithms:
Assign exprimental values v ∼ U(0, 1) using uniform distribution to genes recently added to G.

Rank genes:
Sort genes by experimental value v and assign ranks

Apply algorithms:
For each algorithm {“p-value”, “p-value Greedy”, “GSEA”}

Θ̂ = Apply algorithm selecting best s gene sets

Recovery rate rralgorithm = |Θ̂ ∩Θori|/|Θori|

Table 3: Algorithm comparison: Mean recovery rate (and standard deviation) for different number of gene sets “s”
(based on 38000 simulations, gene selection probability p ∈ [0.1, ..., 0.9], noise to signal ratio ns ∈ [100%, ..., 2000%]

Number of gene sets: S “RankSum” “Greedy RankSum”
1 0.30 ±0.46 0.32 ±0.46
4 1.06 ±0.61 1.60 ±1.12
7 1.64 ±0.80 3.07 ±1.59
10 2.22 ±1.02 4.65 ±1.98
13 2.78 ±1.20 6.26 ±2.39
16 3.31 ±1.33 7.93 ±2.71
19 3.81 ±1.45 9.47 ±3.04
22 4.36 ±1.57 11.06 ±3.25
25 4.89 ±1.67 12.73 ±3.64
28 5.37 ±1.80 14.09 ±3.91

Table 4: Algorithm comparison with GSEA. Mean recovery rate and standard deviation, based on 300 simulations,
p-value is less than 2.2× 10−16.

Number of gene sets: S “GSEA” “Greedy RankSum”
10 17.4% ±9.9% 39.7% ±18.3%

Selection Probability: p
30.0 % 16.8% ±10% 36.6% ±16%
50.0 % 13.2% ±8% 29.1% ±15%
70.0 % 22.4% ±9% 53.5% ±14%

Noise to signal: ns
100.0 % 13.2% ±8% 29.1% ±15%
500.0 % 19.6% ±10% 45.1% ±17%



It is usefull to keep in mind th following analogy: We have an urn filled with balls with numbers from 1 to N ,
we randomly draw NT balls and add the numbers. There are two different cases: i) each time we draw a ball, we
replace it back in the urn or ii) we do not replace it. The probability density function for the first case is easier to
deduct, so we will assuming no replacement. Then we will address tha case when there is no replacement, as the
deduction is similar.

4. RANKED SUM WITH REPLACEMENT

In these sections we will calculate the probability density functions of a rank sum. We’ll assume that genes are
ranked and that ranks can be repeated (e.g. gene gi is ranked ri and gene gj can also be ranked ri), this is
equivalent to say that ranks are drawn with replacement. As an intuitive way of looking at this, assume we have
all the ranks written in small pieces of paper in a bag, we get one piece of paper, read it and place it back in the
bag. It’s also important to note that we assume that all ranking positions are used, which means that all values
from 1 to N are assigned to at least one gene.

4.1. Approximation by normal distribution

If we are analyzing a set of genes T which has NT genes, we calculate the rank sum as
where ri is gene’s gi rank. This is a sum of random variables that converges to a normal distribution when the

number of genes in T tends to infinity. The expectation for ri is (N + 1)/2 and the variance is (N2 − 1)/12 (these
are the mean and varance of uniform a distribution between 1 and N). Then the mean for rmean is

E[rsum] = E

∑
gi∈T

ri

 =
∑
gi∈T

E [ri] = NT E [ri] = NT
(N + 1)

2

and the variance is

V ar(rsum) = V ar

∑
gi∈T

ri

 =
∑
gi∈T

V ar [ri] = NT
N2 − 1

12

so we can approximate rmean by a normal distribution

N
{

µ = NT
N + 1

2
, σ2 = NT

N2 − 1
12

}
Now, we can calculate P (R ≤ rsum) by using the normal cumulative distribution. However, there are several

probelms with this approximation, specially when the number of terms in the set that we want to analyze is small
(e.g. less than 20). In the following section we show how to calculate the exact value of this probability density
function.

4.2. Exact calculation

Now we calculate the exact value of a rank sum probability. In order to do this, we will assume that there can be
repeated rank values (e.g. two genes gi and gj can share rank ri = rj in a list).

We start considering the trivial case when the rank sum has only one term (i.e. NT = 1 and T = {r1}). In this
case, the probability is

PN,1(R = rsum) =
{

1/N if (1 ≤ R ≤ N) and (N > 0)
0 otherwise

because the rank distribution is uniform between 1 and N (only for valid values of R and N , of course).
Now let’s consider the case when the rank sum is composed of two or more terms (i.e. NT ≥ 2 and T =

{r1, r2, r3, ..., rNT
}). To calculate the probability that the two or more ranks add to R, we have to add all possible

combinations such that r1+r2+ ...+rNT
= R. This is the same as the probability of r1 = r and r2+r3+ ...+rNT

=
R− r for all possible values of r, the formula is:



PN,NT
(R = rsum) =

N∑
r=1

PN,1(r) PN,NT−1(R− r) (2)

This formula can be optimized by noting that the maximum value for r in this sum is either N or R−NT + 1.
This is because PN,1(r) is non-zero for values of r ∈ [1, N ] . Likewise, PN,NT−1(r) is zero when r < NT (i.e. there
is no way to add NT ranks to be less than NT because the minumum possible rank is 1), then

PN,NT−1(r < Nt) = 0

PN,NT−1(r ≤ Nt − 1) = 0

PN,NT−1(−r ≥ −Nt + 1) = 0

PN,NT−1(R− r ≥ R−Nt + 1) = 0

so PN,NT−1(R − r) is zero when R − r ≥ R − Nt + 1, which means we can rewrite the limits of the sum in
equation 2 as

PN,NT
(R = rsum, N) =

rmax∑
r=1

PN,1(r, N) PNT−1(R− r, N) (3)

where rmax = min(R−NT + 1, N).
Figure 4 shows some calculated, simulated and normally approximated probability density functions for different

N and NT . Root mean squared error (RMS) between exact calculation and normal aproximation is shown in Figure
5, as we can see the error is very small when either N or NT are over 20, so this is the criteria we use to decide
when to use normal approximation.

4.3. Fast algorithm

Looking at equation 2 we can see that probabilities are zero outside the limits of sumation, so we can extend those
limits to ±∞

PN,NT
(R = rsum) =

N∑
r=1

PN,1(r) PN,NT−1(R− r) =
+∞∑

r=−∞
PN,1(r) PN,NT−1(R− r)

= [PN,1 ∗ PN,NT−1](R)

so we can express this probability as the convolution of the two probabilities, evaluated at R, expanding the
term PN,NT−1

PN,NT
(R = rsum) = [PN,1 ∗ PN,1 ∗ PN,NT−2](R) = [PN,1 ∗ PN,1 ∗ · · · ∗ PN,NT−(NT−1)](R)

this is a convolution of NT functions. If we apply the Fourier transform on both sides F [PN,NT
] = F [PN,1]

NT

⇒ PN,NT
(R = rsum) = F−1{F [PN,1]NT }(R). If we calculate the probability density function this way, reduce the

complexity of the computation to O[NT Nlog(NT N)], which is the complexity of the Fast Fourier transform.

5. RANKED SUM WITHOUT REPLACEMENT

In these sections we will calculate the probability density functions of a rank sum when there is no placement (i.e.
once a gene is assigned a rank, no other gene can have the same rank). As an intuitive way of looking at this,
assume we have all the ranks written in small pieces of paper in a bag, we get one piece of paper, read it and throw
it away (we don not place it back in the bag), adding all the numbers we’ve read we get the rank sum. As before,
we assume that all ranking positions are used, which means that each value from 1 to N is assigned to one gene.



Figure 3: Probability density function PN,NT
(R) shown in blue, simulated values (red) and normal

approximation (green).

5.1. Min / Max values

Before calculating the probability density function, we need to know what are the minimum and maximum possible
values for a rank sum without replacement. Let’s calculate the minimum value for a rank of N terms if we select
NT terms. Clearly the minimum possible value is

Rmin(N,NT ) =
NT∑
i=1

i = (NT + 1)
NT

2

We’d like to calculate the minimum possible rank sum when selecting NT items that have been ranked from
rmin to N (note that the minimum rank is not 1):

Rmin(N,NT , rmin) =
rmin+NT−1∑

i=rmin

i =
NT∑
j=1

(j + rmin − 1) = NT (rmin − 1) +
NT∑
j=1

j

the last term is Rmin(N,NT ) = Rmin(N,NT , 1), so

Rmin(N,NT , rmin) = NT (rmin − 1) + Rmin(N,NT ) (4)

Now the maximum possible when we select NT items ranks form 1 to N :



Figure 4: Normal approximation’s RMS error for different N and
NT values.

Rmax(N,NT ) =
N∑

i=N−NT +1

i

Changing variables i = N − (NT − j):

Rmax(N,NT ) =
NT∑
j=1

N − (NT − j) =
NT∑
j=1

N −NT +
NT∑
j=1

j =
NT∑
j=1

N −NT + Rmin(N,NT )

= NT (N −NT ) + Rmin

Rmax(N,NT ) = NT (N −NT ) + Rmin (5)

5.2. Exact calculation

In this section we’ll find the probability density function for a ranked sum when there are no repeated ranks (i.e. no
replacement). The only difference between this section and section 4.2 is that we assume that for any two different
genes gi and gj the ranks are different (i.e. ri 6= rj ∀gi 6= gj). Although the formulas and the distribution shapes
are different, the methodology to derive the formulas almost the same.

We start considering the case when the rank sum has only one term (i.e. NT = 1 and T = {r1}). We’ll add two
parameters: Nout to specify how many ranks have already been drawn (i.e. we cannot use those ranks) and rmin

to specify the minimum value to consider in the rank sum (the use of this variable will became evident later). In
this case, the probability is uniform, we can only select 1 out of N −Nout ranks:

PN,1(R = rsum|Nout) =
{

1/(N −Nout) if (N > 0) and (1 ≤ R ≤ N)
0 otherwise



Now we define
QN,NT

(R|Nout, rmin) = PN,NT
(R|Nout) δR<rmin

where

δR<rmin
=
{

1 if R < rmin

0 otherwise

When the rank sum is composed of two or more terms (i.e. NT ≥ 2 and T = {r1, ..., rNT
}), as we did before,

we add all possible combinations such that r1 + ... + rNT
= R. Which is the same as the probability of r1 = r and

r2 + ... + rNT
= R− r for all possible values of r. This is the same as doing the calculation for r1 < (r2 + ... + rNT

)
and then multipliying by all posible combinations. We use the parameter rmin to indicate that r2 + ...+rNT

cannot
be less or equal to r1. So the formula is:

QN,NT
(R = rsum|Nout, rmin) = NT

N∑
r=rmin

QN,1(r|Nout, r) QN,NT−1(R− r|Nout + 1, r + 1)

This is recursive formula that depends on five different parameters, so it’s important to narrow down the
recursion as much as possible. In order to reduce our search space, we can use equations 4 and 5 which tell us the
minimum and macimum possible values for R. The final equation becomes

QN,NT
(R = rsum|Nout, rmin) =


NT

∑N
r=1 QN,1(r|Nout, r) QN,NT−1(R− r|Nout + 1, r + 1)

If Rmin(N,NT , Rmin) ≤ R ≤ Rmax(N,NT )

0 Otherwise

So if we want to calculate the probability of having an R = rsum when we draw NT numbers from a ranked list
of N numbers, we just need to calculate

PN,NT
(R = rsum) = QN,NT

(R = rsum|Nout = 0, rmin = 1)

5.3. Normal approximation

In order to approximate this function using a Gaussian probability density function, we need to calculate the mean
and variance.

Mean: Now we want to calculate the mean of a rank sum when there is no replacement. We’ll start by writing
the definition of a rank (see equation 1) sum as

rsum =
∑
gi∈T

ri =
N∑

r=1

r I(r) (6)

where I(r) is the indicator function that is 1 when a gene that has rank r belongs to set T . The mean value is

E[rrum] =
N∑

r=1

r E[I(r)]

We know that there are NT items in T , so the expected value of the indicator function is E[I(r)] = NT /N (i.e.
the set T consist of NT items choosen from N possible ones), then:

E[rrum] =
NT

N

N∑
r=1

r =
NT

N

(N + 1)N
2

= NT
(N + 1)

2
(7)

This is the same value than mean rank sum with replacement (see section 4.1).
Variance: Now we want to calculate the variance of a rank sum when there is no replacement. We will start

by using equation 6



V ar(rsum) = E[r2
sum]− E[rsum]2 = E


∑

gi∈T

ri

2
− E[rsum]2 = E

( N∑
r=1

r I(r)

)2
− E[rsum]2

Using equation 7 we know that µ = E[rsum] = NT
(N+1)

2

V ar[rsum] = E

( N∑
r=1

r I(r)

)2
− µ2 =

N∑
r=1

N∑
r′=1

r r′ E[I(r) I(r′)]− µ2 (8)

Now we need to calculate E[I(r) I(r′)]. When r = r′ then this is just the probability of picking gene ranked r
when choosing NT out of N genes, this is

E[I(r) I(r)] = E[I(r)] =
NT

N
(9)

When r 6= r′ then we can calculate E[I(r) I(r′)] as the probability of choosing NT out of N values where two
of them are ’fixed’ (one is r and the other is r′), that is

E[I(r) I(r′)] =

(
N−2

NT−2

)(
N

NT

) =
NT (NT − 1)
N(N − 1)

(10)

Using equations 9 and 10 in equation 8

V ar(rsum) =
N∑

r=1

N∑
r′=1

r r′ E[I(r) I(r′)]− µ2

=
N∑

r=1

∑
r′ 6=r

r r′ E[I(r) I(r′)] +
N∑

r=1

∑
r′=r

r r′ E[I(r) I(r′)]− µ2

=
NT (NT − 1)
N(N − 1)

N∑
r=1

∑
r′ 6=r

r r′ +
NT

N

N∑
r=1

r2 − µ2 (11)

It is known that
∑N

r=1 r2 = (N + 1)(2N + 1)N/6 , we’ll call this Kr, so

Kr =
N∑

r=1

r2 = (N + 1)(2N + 1)N/6 (12)

replacing 12 in 11

V ar(rsum) =
NT (NT − 1)
N(N − 1)

N∑
r=1

∑
r′ 6=r

r r′ +
NT

N
Kr − µ2

Now we need to calculate
∑N

r=1

∑
r′ 6=r r r′, we’ll call that term Krr′

Krr′ =
N∑

r=1

∑
r′ 6=r

r r′ =
N∑

r=1

N∑
r′=1

r r′ −
N∑

r=1

∑
r′=r

r r′

=
N∑

r=1

[
r

N∑
r′=1

r′

]
−

N∑
r=1

r2



=
N∑

r=1

[
r

N∑
r′=1

r′

]
−Kr =

[
N

(N + 1)
2

]2
−Kr (13)

replacing this latest result into 11 we get

V ar(rsum) =
NT (NT − 1)
N(N − 1)

Krr′ +
NT

N
Kr − µ2 (14)

where µ, Kr and Krr′ are defined in equations 7 12 and 13 respectively (these terms depend only on N and
NT ).

5.4. Approximation

Calculating the probability of a rank sum without replacement means calculating the recursive formula 6 which is
computationally expensive even for small N . As we can see from Figure 6 the shape of the distribution becomes
similar to a Gaussian as N increases, but even for large N a Gaussian approximation cannot be used when
NT ∈ {1, 2, N − 2, N − 1} because in these cases the distributions are always uniform (NT = 1 and NT = N − 1)
or triangular (NT = 2 and NT = N − 2). A summary of how to approximate the rank sum distribution is shown
in table 5.

Table 5: Rank sum approximation
If NT ∈ {1, N − 1}

Rmin(N,NT , rmin) = NT (rmin − 1) + Rmin(N,NT )
Rmax(N,NT ) = NT (N −NT ) + Rmin

Uniform distribution [Rmin, Rmax]
If NT ∈ {2, N − 2}

Rmin(N,NT , rmin) = NT (rmin − 1) + Rmin(N,NT )
µ = NT

(N+1)
2

Rmax(N,NT ) = NT (N −NT ) + Rmin

Triangular distribution [Rmin, µ,Rmax]
If N > 30 and NT /∈ {1, 2, N − 2, N − 1}

µ = NT
(N+1)

2

Krr′ =
[

N
2 (N + 1)

]2 −Kr

Kr = (N + 1)(2N + 1)N/6

σ =
√

NT (NT−1)
N(N−1) Krr′ + NT

N Kr − µ2

Gaussian distribution N (µ, σ)
Otherwise: Should not approximate, use exact formula 6.
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Figure 5: PN,NT
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